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FOREWORD

The science of underwater warfare has progressed rapidly in
recent years, particularly in the development of torpedoes of
greatly increased range and speed, and homing torpedoes which are
required to run complicated trajectory patterns. This advance has
been accompanied by the introduction of problems in the control of
these new weapons. Intuitive, cut-and-try methods of design, which
formerly were adequate for the control of the torpedo, are now too
expensive and time-consuming. The test launching of a full-scale
torpedo is an operation in which there is risk of damage, or loss
of the missile. Since a torpedo is a costly weapon it is highly
desirable that the behavior of the weapon be accurately predicted
before it is ever launched. To this end it is necessary that the
equations of motion and the mathematical expression of the laws of
motion be well understood and be expressed in usable form.

The work on this report was carried on under Bureau of Ord-
nance Task Assignment NOTS-C-6-257-16-54. The report was reviewed
for technical adequacy by Milton Plesset of the California In-
stitute of Technology and G. V. Schliestett of the Naval Ordnance
Test Station.

N. A. RENZETTI, Head
Underwat r Ordnance Department

Released under
the authority of:

a., lirec' or
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ABSTRACT .

Motion equations are developed for a rigid torpedo of con-
stant mass with six degrees of freedom. It is assumed that the
medium is at rest except for the motion caused by the torpedo.
The mathematical form of the "mass accession" forces is derived
from potential theory. The motion equations are referred to body
coordinates in their development, and transformations are made to
inertial coordinates. Some sources of hydrodynamic coefficients
are discussed, and an outline of the methods for obtaining them
from model tests is presented. Solutions of steady-state equa-
tions are given, as well as a brief explanation of the analog
computer method of solving the motion equations.

iv
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INTRODUCTION

A great deal of research has been done in the past few years
in the analysis of the motion of a torpedo. The problem Of un-
controlled ship and torpedo motions was investigated by Schiff and
Davidson (Ref. 1) and by Ninorsky (Ref. 2 and 3). More recently
Bednarz and Harger (Ref. 4) studied the problem with the purpose
of giving a physical insight into the effects of the coefficients
of the simplified motion equations. Triaxial motion equations
were developed by Pierce and Sepmeyer (Ref. 5) for use in-the
Hydrodynamic Simulator. The standardization of nomenclature by
the Committee on Nomenclature of the American Towing Tank Confer-
ence (1948) was an important step forward in the treatment of
motion of a submerged body.

In the past the most serious obstacle to the analysis of tor-
pedo motion has been the absence of information conce-rning the
hydrodynamic forces acting on a torpedo. To eliminate this defi-
ciency towing tanks and water tunnels were constructed. Data
obtained in model tests at these tunnels yield the dimensionless
coefficients that characterize the hydrodynamic behavior cf a
torpedo.

Techniques and facilities for the solution of the motion
equations have been expanded, and it is now possible to solve com-
plex control problems with relative ease. An important facility
used in the analysis of torpedo motion is the electronic analog
computer. With the aid of the computer linear or nonlinear equa-
tions are solved rapidly and accurately.

In this report the motion equations are deve-oped on as firm
a theoretical basis as present knowledge permits. An explanation
of the methods of analysis may be found in Ref. 6. A discussion
of the methods by which hydrodynamic coefficients are measured in
model tests, and a very brief outline of the analog computer~method of solution of the motion equations are included. Since
an understanding of the theory of torpedo motion must precede
applications to the design of new weapons, this report is Presented
with the hope that investigators in the fields of hydrodynamics and
torpedo control will be aided in understanding the present state of
the technique and be stimulated towards its advancement.
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MOTION EQUATIONS

The reaction of a torpedo to external forces is expressed by
the fundamental laws of dynamics. In the development of the motion
equations in this report, it has been necessary to make assumptions
about the nature of the torpedo. One assumption has been that it
is a rigid body. The torpedo is elastic to some degree, of course,
and has moving parts--properties which will probably be of interest
.n future studies. At present, however, it is felt that the
assumption of rigidity is valid for the applications that the equa-
tions of this report have in view. It is assumed, moreover, that
the torpedo is of constant mass. This is a better assumption for
electric torpedoes than for turbine or engine driven torpedoes,
since a considerable quantity of fuel is consumed in the latter.
Usually the rate of fuel consumption is so slow that it has little
effect on the trajectory. In a particular problem, however, an
investigation should be made as to the length of the trajectory
for which changes in the magnitude of the inertia of the torpedo
may be neglected. In particular problems, moreover, it may be
necessary to modify the equations as they are given here.. For
example, it has been assumed that the thrust of the propulsion
system acts along the longitudinal axis of the torpedo without re-
sultant torque. In some cases it may be necessary to add addi-
tional terms to the equations if the thrust is misaligned or if an
unbalanced torque is present. It is assumed the torpedo is fully
wetted. If it is in a cavitating state the equations given here
remain applicable, but a modification of the hydrodynamic forces
is necessary because they are then functionally related to the
cavitation parameter.

BASIC VECTORIAL EQUATIONS OF MOTION

The laws of motion are applied to a torpedo under the assump-

tion that it is a rigid body. The basic equations are

(1) d--

dt

(2) L -
dt

where F is the resultant external force applied to the torpedo
body, 5 is its linear momentum, L is the resultant moment acting
on the torpedo, and b is its total angular momentum. The time

2
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rate of change of the torpedo momenta GOb and Rb must be with re-
spect to an inertial reference frame for the application of the
dynamic equations. A right-handed rectangular reference frame
(xo, Yo, zo) fixed with respect to the earth will be used for this
purpose. The xo-yo plane is tangent to the surface of the earth,
and the zo axis is vertically downward. Use of this reference
frame as an inertial reference frame implies the assumption that
the motion of the earth has a negligible effect on the trajectory
of the torpedo.

An underwater missile in accelerated motion produces accelera-
tions in the flow of the fluid in which it is moving. Consequently
there is a transfer of kinetic energy to the fluid. The rate of
change of this kinetic energy, and therefore the force producing
it, is proportional to the acceleration of the missile. Since the
inertial reaction of the missile is also proportional to accelera-
tion, the missile behaves as if its mass were increased. This
phenomenon is termed "mass accession". It will be assumed in this
report that the mathematical form of the "mass-accession" forces
is given by the theory of ideal fluid flow.

Let F and L be respectively the force and the moment (pre-
dicted by an idea fluid) on the torpedo, and let

(3)E2 F f
(4) L =L -L

-2 - -1

The force and moment on the torpedo predicted from potential flow
are equal, respectively, to the negative of the time rates of change
of the linear momentum and the angular momentum of the fluid (see
Appendix B). Thus

d f
(5) F 1 =  --

dt

d i
(6) L = --

dt

By defining the system of body and ideal fluid momenta as

(7) 1= 2 + 2b

(8) H !!f + # b ,

(8)
3



NAVORD REPORT 2090

the basic motion equations may be written

dG

dt

dH
(10) L2

dt

It is advantageous to employ a frame of reference fixed with
respect to the torpedo body. The reference frame moves with the
velocity I of the torpedo and rotates with the angular velocity _o.
In this reference system (see Appendix C)

(12) = H + xH + V X G

where G and H represent the time rates of change of G and H as seen
from the moving system.

The momenta of the system may be evaluated from the total
kinetic energy T of the system. Let T be expressed as a function
of the components of the velocities V and a, in the body reference
frame. Then, letting
(13) Y =.IU + jV +

and

the momenta are given by

bT bT T
(15) G= i -+ k

au a v 6w

6T 6T 6T
(16) H i-+ -+ k-

6 P bq 6r

(see Appendix D). The total kinetic energy T is the sum of the

kinetic energy Tb of the fluid and the kinetic energy Tf of the
torpedo body. These are derived in the following seotion.

If



NAVORD REPORT 2090

KINETIC ENERGY OF SYSTEM

* Kinetic Energy of the Torpedo Body

The torpedo body will be considered a rigid aggregate of mass
particles. Let mi be a representative particle, and let ri be the
radius vector from the origin of body coordinates to mi. The
velocity of mi is

(17) v + W X

The kinetic energy of the body is equal to the sum of the
kinetic energies of the individual particles of mass, and is given
by

(18) Tb =

Let r have the body coordinates xi, yi, zi. The expansion of
Eq. i yields:

(19) 2Tb - mi[U2 + v2 + w2 + (yi2 + zi2 )p2 + (xi2 * zi.2 )q2

+ (xj2 + yi2 ) r2 + 2Uqzi - 2Uryi - 2qrylzi + 2vrxi

- 2vpzi - 2rpxizi + 2wpyi - 2 qxi - 2pqxiyi]

The following quantities are defined:

(20) mi = m, torpedo mass c I
4

Smi(yi2 + zi2) = Ix ~ miy~zi= 'yz . mixi = mxG -9
q-4 :4

mi( ~i 2 + zi2 ) = I y mixizi = Ixz 4 - miyi = myQ

~mi (xi 2 + yi 2) = Iz - mixi Ixy 0~ mizi mzOga4

Equation 19 then becomes

(21) 2Tb = mU2 + mv2 + mw2 + Ixp 2 + Iyq2 + Izr2

+ 2mzGUq - 2MnyUr - 21yzqr + 2mxGvr

- 2 mzGvP - 2Ixzrp + 2 my(IwP - 2rxGwq - 2Ixypq

The origin of the body coordinate system is usually placed on the
longitudinal axis of the torpedo above the ccnter of gravity. The
positive x-axis is in the forward direction of the longitudinal
axis, and the positive z-axis is vertically downward through the

5
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center of gravity. The choice of this reference frame results in

the simplification of the expression for Tb, since in this case

xG = = Ixy = 'yz = 0

Kinetic Energy of Ideal Fluid

Suppose the torpedo to be moving in the direction of its
longitudinal axis with the velocity U = U(t). It will be assumed
that the flow produced is irrotational and that the fluid is non-
viscous and incompressible. Let the velocity field of the flow be
g(x,y,z,t). Because the flow is irrotational a potential function
(x,y,z,t) exists such that

(22) q= -V

Since the fluid is incompressible, the divergence of the velocity
vanishes; and consequently

(23) dv =-V 20 = o

*There can be no flow across the surface of the torpedo. Hence the
normal component of a point on the surface of the torpedo must
equal the normal component of the fluid velocity at that point.
Let the unit normal to the surface, drawn toward the fluid, be

On the surface, then,

(25) -- = AUn

It is assumed that the flow is started from rest, and it is impos-
sible that finite forces acting for a finite time produce a flow
with infinite kinetic energy. Therefore, the velocity of the flow
must vanish at an infinite distance from the torpedo, since a
finite velocity at an infinite distance would imply an infinite
kinetic energy. Hence a potential function 0 is required which
satisfies Eq. 25 on the surface of the torpedo and whose gradient
vanishes at infinity. A solution is sought having the form

(26) 0 = U(t)00 (x,y,z) i

Since V0 = 0 with al/an = -X on the surface of the torpedo and
V 1 = 0 at infinity, the function 0i is uniquely determined. Hence
Eq. 26 is the solution to the flow problem, since an irrotational
flow with vanishing divergence is uniquely determined by its
boundary conditions.

6
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Suppose now that the torpedo is rotating about its longitu-
dinal axis with an angular velocity p = p(t). As before, a
velocity potential exists satisfying Eq. 23. Moreover, at a point
(x, y, z) of the surface of the torpedo

(27) -- P p(-W -/z)

A solution is sought of the form

(28) = p(t)04(x, y, z)

9(4
Since V =0, --- = Vy -/Az on the surface of the torpedo, andbn
V4 = 0 at infinity, 04 is uniquely determined. Hence Eq. 28 is
the solution to this flow problem. Several velocity distributions

11.9 22, I ,. . . may be added together to obtain another velocity
distributon. The velocity distribution

1 + 22+ 13 +

is said to be the superposition, or rather the result of the super-
position, of the velocity distributions 11, S2 % - . It is
evident that if the divergence or the rotation of each of the
velocity distributions vanishes, the divergence or rotation of
their superposition vanishes also.

Now consider the flows produced by motion of the torpedo in
each of its remaining degrees of freedom. For motion in the direc-
tion of the y-axis a potential V2, and for motion in the direction
of the z-axis a potential w$o is obtained. Rotary motion about the
y-axis yields a potential q5, and motion about-the z-axis yields

r%6. The potential function for the flow produced by motion of the
torpedo in its six degrees of freedom is obtairled, using the prin-
ciple of superposition, as

(29) 0 = U + v 2 + w 3 + P04 + q05 +r 6

Let Tf be the kinetic energy of the fluid. Then

(30) Tf - (l/2),f4 (VO)2 dr

where the integration is over the entire volume T of the fluid.
The integral may be transformed by Green's theorem to

7



NAVORD REPORT 2090

(31)T = -(1/2) o 8 4.dS, -(l/2)p4 0720 d

- -(l ,j 80L-dS since V2 = 0

where the integration is over the torpedo surfaces. Substituting
Eq. 29 into Eq. 31 yields a quadratic form in the torpedo velocity
components,

(32) 2Tf = a1119 + a1 l2Uv + a13Uw + al4Up + al5Uq + al6Ur

+ a21vU + a2v 2 + a23vw + a2 4 vP + a25vq + a26vr

+ a31 wU + a 32 wv + a3 3W2 + a 34wP + a3 5wq + a 3 6wr

+ a41PU +- a42pv + a43pw + aj4p2 + a45pq + a46pr

+ a5lqU + a52qv + a53qw + a5jqp + a55q
2 + a56qr

+ a6lrU + arv + a63rw + a64rP/ + a65rq + a66r2

where

(33) aij = - 6oJ 8 $ij dS

It will be noted that Green's theorem gives

(34) aij = aji

Suppose the surface of the torpedo to be symmetric with respect to
the x-z plane and with respect to the x-y plane. For translatory
motion in the x-y plane,

(35) 2Tf = allU2 + 2aj2Uv + a2v 2

Because of the symmetry of the torpedo the kinetic energy must be
unchanged if v is replaced by -v. Hence a1  a 0. It may be
similarly shown that all the coefficients ot cross-product terms
vanish except a26, a621 a53 , and a35. Equation 32 then reduces to

!i8
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(36) 2Tf al a1 U2 + a22V2 + a3 3 W2 + a44p2 +aq 2

+ a66r 2+ 2a3 5wq + 2a2 6vr

The linear momentum and the angular momentum of the fluid may be
obtained from Tf as is shown in Appendix D.

REACTION OF TORPEDO AND IDEAL FLUID SYSTEM

The total kinetic energy of the system composed of torpedo
and ideal fluid is T = Tb + T

(37) 2T =(m + al 1 )U2 1+ (m + a2 2 )v2 + ( 3 ) 2 +(~+a~p

+ (y +a55)q 2 + (Iz + a66)r2 +mzq - 21xzrp -2D1zGvp,

+ 2a35wq + 2a26vr

* Define

(38) M +all =mjr

m + a2 2 = m + a3 3 =mTIx + a - Jx
IY+ a5 5 M Jy

I+ R6 -J

Then Eq. 37 becomes

(39) 2T _ DILU2 + mTv2 +-mTw2 + jxp2 + jyq2 + jz2+ 2mzGUq

-21xzrp, - 2mz~vp + 2a3 5wq + 2a,26vr

The components of momenta defined In Eq. 15 and Eq. 16 are

(40) X = mjU + mzGq

G= ftv - mzop + a2 6r

GZ mTW + a3 5 q

V 9 i
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(40) Continued Hx = Jxp - Ixzr - mzrv

H y =Jyq + mzGU + a3 5w

Hz= Jz - IxzP + a26v

Let F2 have the components X2, Y2 , Z2, and L2 the components
K2, M2, N2. The basic motion equations (Eq. 11 and 12) written in
terms of their components become

(41) x2 = + qGz -rG

Y2 = y + rGx - pGz

Z2= z + pGy - qGx

K2 = i+ qHR - rHy + vGz -wG

M2 H+ rH -H + wG UG~IM2 = x +rx PHZ Wx - Uz

N2 = + p Hy - qHx + UGy - vG

Substitution of Eq. 40 into Eq. 41 gives
(1i2) X2 =MLU + mz~q + mT(wq - vr) + a3 5 q2 + mzopr - a2 6r

Y2 = mi - mzop + a2 6r + mLUr + mzGqr - mTwP -a 35pq

Z2 = MT4 + a354 + mTvp - mzG(p2 + q2 ) + a26Pr - mLUq

K2 = JxP - Ixzr - mzov + (,Jz Jy)qr - Ixzpq + (a26 + a35)vq

-mzGUr - (a35 + a26) wr + mzGwp

N2= yq+ zG +a5w + (jx - Jz)Pr + Ixz(P 2  r r2 ) -zvr

- a26vp + (mL - mT)U + mzowq - a35Uq

N2 = 4 Ixz + a26v + (Jy - Jx)pq + a3 5wP + Ixzqr

+ (mT - mL)Uv + a26Ur

10
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These, then, are the basic motion equations for a torpedo referred
to a set of axes fixed with respect to the torpedo, the positive
x-axis in the forward direction of the longitudinal axis, and the
z-axis vertically downward through the center of gravity of the
torpedo. Assumptions under which they have been derived are

1. The torpedo is a rigid body of constant mass, symmetric
with respect to a plane through its longitudinal axis.

2. Motion of the earth has negligible effect on the trajec-
tory of the torpedo.

3. The medium is infinite in extent and at rest except for

the flow produced by the motion of the torpedo.

4. The torpedo is fully wetted.

5. Mass accession forces are formally given by the theory of
ideal fluid flow.

EXTERNAL FORCES AND MOMENTS ACTING ON THE TORPEDO

The external forces and moments acting on the torpedo are

those caused by gravity and the propulsion system, and those pro-
duced by hydrodynamic and hydrostatic pressures. The net force
produced by gravity is the weight of the torpedo acting vertically
downward at the center of gravity. The net force of the hydrostatic
pressures is a buoyant force acting at the center of buoyancy of
the torpedo. Resolution of these forces and the moments produced
by them onto body coordinates is given in Appendix E. The thrust
of the propulsion system will be assumed to act along the longitu-
dinal axis of the torpedo with no resultant torque.

Hydrodynamic forces predicted by the theory of ideal fluid
were discussed above. This theory predicts no lift or drag on the
torpedo. Since a torpedo does, in fact, experience lift and drag
forces, they are ascribed to deviation of the fluid motion from
potential flow because of the viscosity of the fluid. At very high
Reynolds nuibers this deviation from potential flow will take place
in a thin layer in the negihborhood of the surface of the torpedo
(see Ref. 7). Particles of fluid at the surface of the torpedo
adhere firmly to it so that not only the normal component of the
fluid velocity at the surface but also the tangential velocity is
equal to that of the surface. Outside the boundary layer a poten-
tial flow will exist. Let it be assumed that this potential is the
same as Eq. 29.

11



NAVORD REPORT 2090

The Navier-Stokes equations for viscous fluid flow give the
force per unit volume acting on the fluid as

(4'3)f VP+k&

where P is the pressure, q is the velocity field, and k is the
coefficient of viscosity of the fluid. Integrating over the entire
volume of the fluid gives the total force acting on the fluid as

(44) frfdT . frVP dT +kV2 d7 = f Pn dS - 1f 5 -dS

where the surface integrals are over the surface of the torpedo,
and n is the unit normal to the surface projecting'into the fluid.
It is assumed that at the upper limit of the boundary layer
q = -V$- At a point of the surface whose radius vector from the
origin of body coordinates is r, the velocity is V +W x r. Let
the thickness of the boundary layer be denoted by-S. -The7n,
approximately,

(4'~5) - + t x442 x

The difference in pressure between the inner and outer surfaces of
the boundary layer is small (Ref. 7). Hence, the additional force
on the torpedo because of the viscosity of the f.uid is approxi-
mately

(46) -fS(VO+ V +COX r)kJ 1 dS

Since

(V + X r).n= -(VO).n at the surface,

-V0- (V + a, xi) represents the relative velocity at which the
potential flow is sliding over the' surface. This is a linear
function of the torpedo velocity components. If ( were independent
of the velocity components, then, the viscosity-induced force would
be albo a linear function of the torpedo-velocity components. This,
however, is not the case. The boundary-layer thickness is a func-
tion of Reyholds number and the form of the surface, Moreover,
the boundary layer may become quite thick and separate toward the
after end of the torpedo, and the analysis given above is then not

applicable. It is at least reasonable to assume, however, that
the viscosity forces and moments are functions only of the torpedo
velocity components.

The remaining hydrodynamic forces to be taken into considera-
tion are those produced by deflections of the control surfaces.

12
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These forces depend primarily on the magnitude of the deflection
of the control surface and not on the rate in control systems used
at present. It will be assumed, then, that the forces and moments
produced by control surface deflections are functions of the
magnitudes of the deflections, de and err .

The forces and moments of Eq. 11 and 12 may therefore be
written

(47) E2 = 12(U, v, w, p, q, r, aey dr) + B +W +T

L= 1;(U. v. w. p. q, r, 4'e 4r) + zBx B + EGX W

where B is the buoyant force, W is the weight of the torpedo, T is
the thrust, N is the radius vector to the center of buoyancy, and
E_ is the radius vector to the center of gravity.

Let the _omponents of 70 be 2, Y2, Y2 and the components of
be K2 , F2 , N2 . These forces and moments are usually determined

in model studies (see section entitled "Sources of Hydrodynamic
Coefficients"). Results obtained from these studies show that,
for most torpedoes, the hydrodynamic forces and moments are
approximately linear functions of angle of attack and turning rate
over the normal operating range. Forces and moments produced by
control-surface deflections are also linear over a wide range for
most torpedoes. There is some Justification, therefore, for
expanding the components of E2 and in a Taylor series about
U = Uo, v = w = p a q = r = d!, = ohr = 0, where Uo is the operating
velocity of the torpedo, and neglecting all but first order terms.
Hence, letting X20 be X2 evaluated at the point about which the
series expansion is made, and similarly with the other components,
and letting U = Uo + u,

(48) X2 = X20 + X2uu + XLv + X2wW + X2pp + X2qq

+ x~rr + x2 dea4 + 4

T2 a Y20 + Y2uu + Y2vv + Y2ww + Y2pP + Y2qq

+ Y2 rr + y~r 6+ Y2dar

Z2 - Z20 + Z2uu + Z2vv + Z2ww + Z2 pp + Z2qq

Z21r + Z2Sare + Z2d'r

13
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(48) Contd. K2 = K2 0 + K2uU + K2vV + K2wW'+ K2vP + K2 qq

+ K rr + K2 de + K2 jr4

M2 = M2 0 + M2u + MN vv + 42wW + M2 pP + M2qq

+ ANr + M2 ored e + M2 ,P.

N2 = N20 + N2Uu + N2vV + N2wW + N2 pP + N2 qq

+ N2r + N2deeO'e + N20ror

where the partial derivatives are evaluated at

u - v = w = p - q= r= r =de 4 0

Because of symmetry with respect to the x-z plane, and because of
4the point about-which the Taylor expansion is made, the following

partial derivatives and component values at the point of expansion
vanish:

X2v = X2p = X2r = X2q X2w = X2cfe = X2or = 0

"2u - =2w -2q - Y24e Y2 0  o

Z2u a Z2v= Z2p = ~r Z2 r o =0

K2u = Kw = K2q = K2e K20= 0

N 2 M2 , M- 2Jr M2 0  0

N2u N2w = N2q N2oe = N2 0 = 0

Using the resolution of buoyancy and gravity forces and mo-
ments as given in Appendix E and the linearized external forces
(Eq. I8) the equations of motion (Eq. 42) become

(9) X20 + X2uu + T -(W -B) sin = - kLu + mzGi + mT(wq - vr)

+ a35q2 + mzGpr - a26r
2



NAVORD REPORT 2090

(49) Y2v v + Y2 pP + Yr + Y 2 rr + (W -B) sin 0 cos e
Contd.

= mTv - mzGp + a26 + mLUr + mzGqr - mTwp - a35pq

Z2wW + Z2 qq + Z2 ede + (W - B) cos $ cos 6

= mT + a35i + mvp - mzG(p2 + qci) + a26pr - mLUq

K2vv + K2pp + K2 rr + K2r r - wzG sin 0 cos e

jxP " Ixzr " mzGv + (jz " jy) qr - Ixzpq + (a26 + a35)vq

- mzGUr - (a35 + a2 6)wr + mzGwp

M2ww + 2qq + M2 dee + BxB cos cos G - WzG sin 0

= + mzG L + a35  + (+ x - Jz)pr + Ixz (p2 - r2 )

- mzGvr - a26vp + (mL - mT)Uw + mzdwq - a3 5Uq

N2vV + N2pp + N2rr + Nafrdr - BxB sin 0 cos e

= Jr - IxzP + a264 + (Jy - Jx)pq + a35wP + Ixzqr

+ (mT - mL)Uv + a2ur i

The motion equations (Eq. 49) will be rewritten in terms of
angle of attack m and angle of sideslip 0. By definition

(50) sin -v

v
sin =--

V

It will be assumed that m and 0 are small angles so that the
sine of the angle is approximated by the angle. Moreover, a change
of notation will be introduced at this point. Let

15
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X0 = X20 y -Y~vV

XU = X2U yp.=y 2 p

=r y2r

r rd

KO= -K~vV

Kp=K~ Mci= + mT -mL)V2

Kr K~ Mq = 4 2q +a 35 v

No -N2vV + (niT -ML)V
2  M -a35V

ed M2dP

Nr N~r a2 6V z=zw

N3 a26V Zq =Z2q

r 2dj.
N6= = -a35

Zd' = Z2 <Pe

With this change of notation the equations of mnoti.on (Eq. 49) beoivm

(51) X + Xu+T -(W -B) sin e

m* m~ + mTV(a~q + oir) + mzpopr +Z'q2 + v;

Yop+ Ypp + Ypr+ YO+Yd-dr +(WB os e in 1p

MT= -Z + mLUr + mz~qr + Zijpq - rnjTlp

ZMM+ zqq + Zaj+ Z 4e e+ (W - B) cos co aO

16
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(51) KOO + Kp + Kr+Kd f - WzG sin cosi I
Contd.

= Jp - Ixzr + mzGV3 + (Jz - Jy)qr - IxzPq

+ V(Y + Z4) (0q + mr) + mzGUr + mzGVp

Me + Mqq + Mlq + M e e 
+ BxB cos 0 cos - WzG sin &

ie
= Jyi + mzGU + (Jx Jz)pr + Ixz(p2 " r2)

+ mzGVor + N Op + mz0-Vaq

Nop + Np + Nrr + Njf + % X sin 0 cos

= Jz" Ix + (J7 - Jx)pq - l% p + Ixzqr

TRANSFORMATIONS OF MOTION EQUATIONS

The motion equations may be written in terms of the inertial
angular position of the torpedo,#,9, , (Ref. 4). The com-
ponents of the rotational velocity of the torpedo, p, q, and r, in
body coordinates are related to', e, e by

(52) p= ii

q = cos e sin 9+ecos O

r =300 cos )o -6 sing'

(see.Appendix F). Components of the angularacceleration, p, q,
and r, are subsequently found to be

(53) &a O -$sin 19-e cos 0

q r1cos 19 sin Y6 -ksin 9 sin +1' Y9cosB cos 6

+ C cos W -6 sin f7

;=Vcos &cos 9-*6'sin 8cos 9-Mcos 6sin 9

- sin -6 cos p

17
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In addition to the assumptions already made it will be assmed
that the pitch angle 0 is small so that approximately, sin 9 =e
cos 6 = 1. Using Eq. 52 and 53 the motion equations (Eq. 51) are
expressed in terms of inertial angles as

(54) Xo+Xuu+ Tx -(W-B)e

+ mz ? - sin 9D + yf97 c2oso+ 0 cos 9 )

+- o%~'si + MTV B sin ? -- - v Co i?)

+ Vcos C0 - sin 1 q(Y sin + s

+ Yr( cos ? - e sin )( + m'G(O 00 ) (o19 '

Y + Y(-) +Yr(O cos s?'- ( sin 9) + Y cos )

Zc +Zq ln+8cos sin + b sn -sin

pr

+ (W - B) sin. -mTV_ - mzG(.O-?9 - 60

"+mLU( cos9P-esin 90

- mapVco - re) + Zi' je)( sin?5 +4 oc 90)

ZCL+ Zq(3k sin F + b cos P) + zi(j sin Y19* sin ~

+ 3k'osqPD+ "coso sO-5 in p)+ zor cr + (W -~ B) rp

=MTV&i - mqTVO (0 iv") - M1ZG( 0..~)

-mzG' sin cl + 0os 5p)2 Co V

-sin) -mU(3*'sin P + 14 oso)I

KOO + pO e) + 00 co 6t sin + +-,a z. SI

= (9 ye' - I*W - - ; e r- Y9 I
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(54) -" sin Op cos 99) + mzavgI Contd.

+ z- J c)(ros 9-6 sin (ksin 97+6 cos 9)

- 0) -r)(& sin + L cos V) + v(Yi + z4) p

(isin 90+6 cos ~)+ '"zGrvcL( 0 39

+ V(yi + Za)c(* Cos - sin

mzrV(k Cos e s In
MCI + Nq Wsin 7+ c O ) + % + Mdeo e + BxB cos Wzsin

= Jy( sin - sin V+ cos p +9- cos -0 sin n )

+ mzG'a + (J1 -Z ?cs 0 i 7

+ Ixz( _.,.#9)2 _ Ixz(*O'os 97 _ B sin F)2 + Np~o -*?)

+ mzGvcL(y'sin p + 00cs87 + mzGVO3(*cos 9 -sin 9')

50 + N '- ) + r(*os OP - sin +)

+ N-rdrr - BxB sin ¢o

- ( J~ cos go -p96; cos tv-9 sin 97Bsin 9'

+ (J, J- ~(vi -ft') (*bsin 9. + cos pP)

- MY7 -?r)a, + Ixz(?icos 9P - dsin 9)jsin P

+69008O

These equations are greatly simplified if terms involving
products of velocities may be neglected. Dropping such terms,
Eq. 54 becomes

19
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(55) X0 + Xuu + Tx- (W -B)-- mL + mzG(Vsin + O Cos

10+ Yp(O) - Pe9) + Yr(? cos 9'6sin )

+ Y;(Fcos 960-"sin 90 + YCPr + (w -B) sin

= -mTVO - mz0(@ -38) + mLV(' Cos P- sin 0)

z+ + Zq( sin 9' + cos 9) + Zj( sin 9 + Cos 9 )

+ Zofedr + (W B) cos

-mTgc - mL~V(*sin +~ cos

Koo + Kp(- ) + Kr(*cos '-8sin + Kr -Wz G sin 9
r

WO JI(z QVe - ,(~Cos 9'- sin 9O) + mzGV

+ mzoV(3 cos 4V - sin 90

N4MC + NO sin 9 + 6 cos p) + M + Mdf de + 005 cos W-z

=Jy(Vsin 0 + 0" cos JV) + m~

NO + N(O- ke) + Nr(I cos p - sin )

+ NoI + Nd r- BXB sin ;

= JZ(?cos 9 - " sin xz -

where it has been assumed that Uo : V.

If4 = Ixz = z= Yp = Np = 0, and the forward velocity Is
constant, Eq. 55 may be reduced to two sets of equationsy the yaw
equations and the pitch equations. The yaw equations are

(56) + gx + if+ Yf = -mTVO + mLV-
r

NP+Nr + N6+ Nd r

20
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The pitch equations are

(57) Ze + Z b+ Zi*+ zae + (W - B) MTv - mLV

Ma~x + Mq6 + Na; + Mleede + BxB =Jy,"
~!

It is sometimes convenient to change the origin of the body-
fixed coordinate system. Suppose the center of gravity is to be
shifted, for example. It is then desirable to write the equations
with the new center of gravity as the origin. Hydrodynamic forces,
which depend only on the exterior shape of the body, are unchanged.
There will be a change in the hydrodynamic coefficients, however,
because of the change in angle of attack at the new origin. Sup-
pose the origin to be shifted forward on the longitudinal axis a
distance A, and consider the hydrodynamic force and moment to be

(58) Y = Y2v v + Y.r + Y2 dr

N = N2 v + Nrr + N2 r

the lateral velocity at the new origin is

(59) v* = v + Ar

The moment around the new origin is

(60) N* = N - YA

In terms of v*, then, the force and moment at the new origin are

(61)- Y Y2vv * + (Y2r - A2v) r + Y o

=* (Ne,, - LAy~)v* + [Nf.r -Ay~. A(N~v & Y20] r

+ (N2S'r - A~r dr

Hence

(62) y2 V* =~

Y2 r* = Y2r y

Y =cr Yfr

21
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(62) N2v* = - 2v
Contd.

N2r* = N2r -AY2r " A(N2v "y2v)

N =r* Nj - -62Jr

Substitution of Eq. 59 into the expression for Tf (Eq. 36) gives

(63) = 66 - 226 + a2 2

a26* = a26 - a2jA

j The yaw equations (Eq. 56) become

(61.) er+ Y,* + Y J.9'+ Yd'r*dir =MV + MLq.s

N,3*1* + Nr*y+ N *4* + Nd~r*, zY

where4(65) Y* Y

y1r* --= '

Y = -a26*
N*= N -AYI

Nr* = Nr - AYr + !(NI " i) + al v

N = a26*V

NiNdr - Yr

Jz* =z* +

Similar transformations may be carried out for the pItch equJtions
(Eq. 57). The new pitch equations are j

22
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(66) qa*~ e eq6  
4 e+Z7 + (W - B) IUTV4* -mLV6

M*cL* + Mq4+M.*&* + Mde* ar + BxB =Y1

where

(67). Zi*Za

qv~

Zq = -a3

M*= MM + AZM

M * =M + AZ+ ,Mc+AZ +aV
q q q

a, 3

a3 a* 352+ a aP

sOURCES OF RYDRODYNAic COEFFICIENTS

MODEL TESTS AS SOURCES OF HYDRODYNANIC COEFFICIENTS

Model tests may be classified Into three types: static tests,
rotating-arm tests, and forced-oscillation tests.

Static Tests

In static tests the model may be towed through a tank or

placed In a water tunnel at a fixed angle of attack. The resultant

23
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forces and moments are then measured. Suppose the model to be
towed through a tank at a fixed angle of sideslip P, and let the
measured force and moment be, respectively, YM and NM. From Eq.56

(68) Y1 + YP + Y'r 0

r!
NM + NOO + -a r

rr

By repeating the experiment at different sideslip angles, rudder
settings, and velocities Y, Y.! N, and Nor may be determined as
functions of p, cr, and velocity. By rolling the model through
90 degrees, the coefficients Z, Ze, M, and M& may be deter-
mined in a similar manner. C e

The drag Xo may be determined by measuring the force component
along the longitudinal axis. It is found that for the range of
velocities in which most torpedoes operate Xo may be expressed in
terms of a dimensionless coefficient 4 and the velocity as

(69) X = 1/2PAXoV2

where A is a characteristic area.

The coefficient Xu may be obtained from Eq. 2 by differen-
tiating it with respect to V. Thus

(70) x= PoAV

Rotating-Arm Tests

In rotating-arm tests the model is towed in a circular path
at fired angular velocities and at a fixed angle of attack. For
this condition the motion equations (Eq. 56) become

(71) Y + YO+ (Yr -mV) k+ Yc 4 0

N1 + Nop + Nr* + 1Ncr Cr = 0

From these equations the coefficients Yr and Nr may be deter-
mined. The coefficients Yp and M.- cannot be measured with this
type of test since an accelerated motion is required. Measurement
of these coefficients may be accomplished by forced oscillation
tests.

21f
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The rotating-arm test has the advantage, however, of making
possible the determination of the nonlinearity of the hydrodynamic
coefficients. For example, M may be determined as a nonlinear
function of % by measurement af the moment M over a range of angle
of attack m. For a more complete discussion of the nonlinearities
of the coefficients see Ref. 4.

Forced-Oscillation Tests

In one such test the model is supported by means of a shaft
in a water tunnel. The shaft is made to oscillate through the
application of a sinusoidal torque applied.through a spring.
Measurements of amplitude and phase then permit the computation
of the hydrodynamic coefficients.

The model is placed in the water tunnel as shown in Fig. 1.

Water Tunnel

Shaft 27 7

Main DriveM

Spring

FIG. 1

Let

K1 = spring constant of main drive spring

K2 = spring constant of shaft

V1 = input displacement angle

Y2= output displacement angle

Define Yland Y2 positive in the same sense as the yaw angle,/.
Two or three support positions may be used in the test. The hydro-
dynamic coefficients will be defined about one of these positions.
Suppose three positions to be used, and let the hydrodynamic
coefficients be defined about the center support position. The
motion equations of the model are

25
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(72) Iz-= NOO + NrS+ N1 + N?+ No

(73) mV( - = + YO+ YO + Yji+ Yo

where No is the moment about the central support position applied
to the model through the shaft, and Yo is the side force applied

to the model by the shaft. When the rotation is about the center
axis,

(7) No -K2(V -y 2 )- -Ki( 2 - 'l)

When the rotation is about the forward axis, the applied moment Is
given by

(75) No - 2(3 2 ) +Yo-&

where A is the distance between the center and forward support
positions.

The angle of sideslip at the center support position is equal
to v when the rotation is about the center support. When the model
Is rotated about the forward support, the angle of sideslip is
given by

A .
(76) + f + r

Hence, when the forward support position is the center of rotation,

(77') Yo= -z '- YOr+TO Yr? Y ()k+W

and the applied moment is

(78) No -K-((k - Y2) -14 (M& + Y. + Y4)P

+ (Yr+ A+ *+O

Equation 72 then becomes

- [ + - A(Yr + AYC)* -

26No - AY]V -2(V -'/2)
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Let

A A

-Q = N, + N + -NAY +- O

v v

R = NA -0

Then Eq. 79 becomes

(81) P + Qk- R 2(Of V2)

When the center support is the center of rotation A = 0. The
coefficients for this case will be denoted by Pc, Q, and Rc. The
coefficients for the forward support position will be denoted by
PF, ,Qp, and RF.

The equation relating31, 71, and Y2 as obtained from Eq. 74
is

+K1  K,
(82)

K2  K2

Let the input displacement angle 1 be

(83) = A, sin U)t

The measured output is

(84)- 1'2 = A2 sin (Oft -

= A2 cos 6 sin Oft - A2 sin 6 cos Wt

Hence, from Eq. 83,

(85) = (1 + )Acos6 - A sin it
LK 2  K2

- (1 + -)A2 sin e cos CUt
K2

27
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Let
( K1  K1I K1

(86) l +-)A 2  os 6 -- A1 .a, - (1 +--')A 2 sin - b
K2  K2  K2

Solution of Eq. 81 then yields

(87) KAIA 2 sin e

j(a2 + b2 )

( + 2) A2 -A, coseo
(88) R +- 2P K2 -K2A2 ~

a2 + b2

Since the right-hand sides of Eq. 87 and 88 contain only meas-
urable quantities, It is possible to determine the combinations of
hydrodynamic coefficients of Eq. 80. Thus

(89) PC = Ize - i

-Q0C = + N

Re =No

where IN is the moment of inertia about the center support when
the mode is rotated about the center support position. Rotation
about the forward support position yields

(90) PF = Ip - N-NO + A(mFA + Y +'YO)

-Qp = Nr + Nj + No - A(Yr + Yj +& Y)

R= N~

where Izp is the moment of Inertia about the center support posi-
tion when the center of rotation is the forward support. It may
differ from I because the mass of the model may be changed
slightly In changing the center of rotation. The mass of the
model when the forward support position is used is denoted by mp.
With three support positions Eq. 89 and 90 yield all the hydro-
dynamic coefficients if it is assumed that

.1 28
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If only two support positions are used it is necessary to estimate
one of them, and Yj is the most convenient to estimate.

Another type of forced oscillation test may be used to deter-
mine the lift coefficient. The model is made to oscillate
laterally in the water tunnel by means of a sinusoidal force
applied through a drive spring as shown in Fig. 2.

FIG. 2"

Let displacement of the lower end of the spring be and the dis-
placement of the upper end 7?. The force on the model is

(91) Yo = KU - 1)

where K is the constant of the spring. The motion equation of the
model is

(92) (mV + Y ) + YA + Yo = o

The angle of sideslip is

V

Hence, using Eq. 93, Eq. 92 becomes

(9) (m + )j ., (-)f . K? = K+
V V

If the measured response to an input,

(95) .A1 sin t

is

(96) C=A 2 sin (Wt 6)
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Eq. 94 may be solved for Yo and Y as

(97) KV A1
Yo =---sin a

0) A2

KV A1
Y= - (1 -- cos - mVA2

OTHER SOURCES OF HYDRODYNAMIC COEFFICIENTS

At the present time model tests carried out in water tunnels
or towing tanks are the most dependable sources of hydrodynamic
coefficients. For preliminary design purposes, however, the
estimation of the hydrodynamic characteristics of a torpedo yet to
be built is essential. This problem will become more acute when
torpedoes of higher speed and more complicated trajectories are
built. It will then be necessary to specify a body shape and a
tail configuration that will permit desired performance while the
torpedo is still in the drawing-board phase of development.
Attempts are being made to estimate coefficients on the basis of
empirical data and hydrodynamic theory. The aim of this work is
to determine the hydrodynamic coefficients given a body shape and
tail configuration, or, specifying coefficients, to construct a
body and tail configuration having the desired hydrodynamic coeffi-
cients. Model tests would then be only a check on the preliminary
values if these attempts are successful.

The mass accession terms of the motion equations are usually
estimated since they cannot be determined from static or rotating-
arm tests on models. It is customary to evaluate these terms by
assuming the torpedo to be an ellipsoid of revolution. The coeffi-
cients aij of Eq. 36 are then given by

all = klmf

a22 = a3 3 = k 2mf

a = 0

a55  a66 = k'If

a26 =a 35 = 0
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where mf is the mass of the displaced fluid and If is the moment
of inertia of the displaced fluid about a minor axis of the
ellipsoid. The kl, k2, and k' are Lamb's coefficients (see Ref.8).
It has been assumed that the origin is at the center of the
ellipsoid. If the origin is forward of the center a distance A
the coefficients aij are given by

all = klmf

a22 = a33 = k2mf

a = 0

a55 = a66 = k'If + k2mf&2

'35 = -a26 = k2mf&

A check on the estimated coefficients may be obtained from
free-flight tests of instrumented torpedoes. When records of
pitch, yaw, roll, depth, and control-surface deflections are
obtained from full-scale torpedoes in free flight, a comparison of
the recorded response with the response computed from the equations
of motion may be made. This avenue of approach has not as yet been
fully exploited, and much work remains to be done before techniques
are developed for determining hydrodynamic coefficients from free-
flight records.

FIELDS OF APPLICATION OF NOTION EQUATIONS

The nonlinear motion equations (Eq. 54) are very complex.
Moreover, in order that they be exact, it is necessary that the
hydrodynamic coefficients of the left-hand members of the equations
be considered as nonlinear functions of the velocity components.
It is improbable, therefore, that the complete equations in this
form will ever be of great use to engineers. The partially
linearized equations (Eq. 55), on the other hand, may be solved
without great difficulty with the use of an analog computer. In
cases where they are valid, these simplified equations can provide
valuable information about the trajectory of a torpedo. In most
studies that have been made up to the present time the pitch and
yaw equations (Eq. 56 and 57) have been deemed sufficient.
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SOLUTION OF STEADY-STATE EQUATIONS

The motion equations (Eq. 54) may be solved if a steady-state
motion exists, such as trimmed straight flight or a steady-state
turn. Solution of the equations in these cases is useful because,
in the one case, the trim pitch angle and elevator setting must be
known in order to set the control system for straight flight; and
in the other case, the change of depth in a steady-state turn may
be determined.

Trim Flight

If the torpedo is moving in straight trimmed flight

and

The motion equations (Eq. 54) become

(98) Xo + Tx - (W - B)m + XuU 0

ZaP + z, ore + (W - B) = 0

Mcp + Mda e + BxB -WzG= o

Solving for the trim values of u, m, and de gives

-ZBx, (W - B)(Ma - Wza)
d'el =

Z= ,e - Zde(M - WzG)

-Z(fBxB + MNd(w - B)
-e e

Zec " WZG) " Md~Za'

Xo + Tx  (W - B)m1
ul = +
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Steady-State Trim

If the rudder is given a steady deflection when the torpedo
is in straight trimmed flight, a rolling moment will be produced
because of the centrifugal force acting on the center of gravity
of the torpedo, which lies below the longitudinal axis. Because
of the resulting roll the rudders will cause the torpedo to spiral
downward. However, the change in depth will cause the control
system to function, giving an up elevator which will tend to re-
duce the depth error. When a steady state is attained, the
torpedo will circle at a constant depth error with constant angles
of roll, pitch, sideslip and attack, and a constant elevator
deflection different from the trim value. Under these conditions

= constant

and

The motion equations (Eq. 54) become

(99) Xo + Xuu + Tx- (W -B) mTV( sin + cos)

+* 2 (-Z* sin2 9 + yi cos 2

- mzGFO cos

- Y09+ Yr* cos + Y, + (w - B) sin 0

= mLU*VCo0 9 + mzGe cos 0 sin + mTVc&;/&

- Isin ;

z + Zq* sin 9 + Zd de + (W - B) cos

SmLV)oe - mG' 2 - mzQq72 sin2  + cos

- mL sin3

IJ
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(99) K -Kp + 3k cos 9 + Krr-wz sin
Contd.

- (T - T,)P cos 9 sin9' + I=R sin 99

TeveYa + zet(b sin + , oo , - a- d con -

-mzGVG e

M,,, + Mq* sin 97 e + + xBco - wzGO
=(,Tz - Jx) 9 Cos 9 + Ixz -%2 _ Ixzp cos 2 9

-NY * & + mzGv ( W sin p + s cos o)

NO -pP + Nrr cos p + N d ',rr - BxB sin

'Ali- (JX T y)*26 sin 5V + Mam + Ixzo2 cos 5P sin p

e.=mcosp- psin
These equations are to be solved for Of, 9j, 0, G, 19, U., and e"A
numerical method of successive approximation is probably most con-
venlent to use. A first approximation may be obtained by line-
arizing Eq. 99 in all variables except OP. A first approximation
to gP is given by

(100) =tan" _.

I9

The following equations then yield first approximation to and 0. .

( Ol)r + o + r + (W - B) sin 9 m,.vr cos 9
NOO + Nr* cos + NapcP -BxB sin 0 j i

Using the first approximations to )k and obtained from Eq. 101 .:
Eq. 102 may be used to yield first approximations to m, a"e, and
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(102) Zm + Zq sin + Zde e + (W- B) cos= -mLV)k sin 9

6 =acos - 0 sin 9

If more accurate solutions are desired a numerical method of suc-
cessive approximations may be used starting with the first
approximations given by Eq. 100, 101, and 102 (see, for example,
Numerical Calculus, W. E. Milne, Princeton University Press,1949).

Depth error in the turn may be calculated by considering the

depth error necessary to yield the elevator setting given by
Eq. 99.

STABILITY OF CONTROLLED TORPEDOES

The behavior of a torpedo in the water is a function not only
of its hydrodynamic characteristics but also of its internal
control system. The complete system must be considered before it
can be decided whether a torpedo is capable of the performance
that is required. Study of the complete system, comprised of
hydrodynamic characteristics and control system, is usually termed
"stability analysis". It is not the purpose of this report to
discuss all the methods by which stability analyses may be under-
taken, but it seems appropriate to describe the manner in which
the motion equations enter into the problem. A control system for
a torpedo contains devices that can detect the position or attitude
of the torpedo or their rates of change. Signals from these de-
vices are used to control the action of elevators or rudders which
produce changes in the trajectory of the torpedo. Thus the con-
trolled torpedo constitutes a feed-back system, or servomechanism,
and standard analysis techniques from the theory of servomecha-
nisms are applicable (see Ref. 9).

A simple example will be used to show how a control system
may be analyzed. Assume that the trajectory of a torpedo is in a
horizontal plane and that the torpedo does not roll. The motion
equations are given (Eq. 56) as

(103) - mvM - YA + (Yr - mLV)* + Yr+ VA

(104~) Jzy NOP + Nr* + Nj +- Nrdr
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The rudder is controlled by a signal obtained from a device sen-
sitive to direction, such as a gyroscope. It will be assumed that
the rudder deflection is proportional to the difference between
the torpedo direction V and a reference direction Ws. A time lag
T, is introduced in the equation to represent the delay in the
actuator that operates the rudder.

Thus
d

(105) (1 + Ti- = yiy
dt

Equations 103, 104, and 105 may be solved for in terms of
yrs. Usually Vs is a constant direction. Depending on KWand the
hydrodynamics, the motion of the torpedo will be either stable or
unstable. It is said to be stable if transient oscillations are
eventually damped out and the torpedo assumes the direction Ys.
The motion is unstable if the oscillations continually increase in
amplitude. It is the aim of the designer to choose a K) that will
result in a fast well-damped response to a disturbance.

Even a simple system such as that of the example cited above
requires long tedious computation if it is to be solved without
recourse to mechanical or electrical computers. A great saving in
time and effort is achieved by the use of such aids to computation.
This type of problem is particularly amenable to solution with the
use of an analog computer such as the REAC (Ref. 10). Appendix G
shows how Eq. 103, 104., and 105 are solved on the REAC at the
U. S. Naval Ordnance Test Station. The REAC is capable of solving
much more complicated problems, but the principle of opera tion is
demonstrated rather well by this example.

I

SI
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Appendix A

NOMENCLATURE

aij Components of apparent mass tensor

B Buoyancy of torpedo

F Force acting on torpedo

El Force on torpedo predicted from potential flow

!2o !-!

f Force per unit volume acting on fluid

g Acceleration of gravity

Gj, Linear momentum of torpedo

G Linear momentum of fluid

H~, Angular momentum of torpedo

11f Angular momentum of fluid

Hx, Hy, Hz Components of H in body coordinates

Ix, Iy, Iz  Moments of inertia about x, y, z axes, respectively

Iyz, Ixz, Ixy Products of inertia

Jx, Jy, Jz Apparent moments of inertia about x, y, z axes,
respectively

k Viscosity coefficient of fluid

K2 , N2, N2  Components of in body coordinates

37
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L Moment acting on torpedo

__ Moment on torpedo predicted from potential flow

m Mass of torpedo

mL Apparent longitudinal mass of torpedo

mT Apparent transverse mass of torpedo

n Unit normal to surface

p, q, r Components of w in body coordinates

P Pressure acting on fluid

i Velocity field

T Thrust of torpedo

Tx  Magnitude of thrust of torpedo

Tb Kinetic energy of torpedo body

Tf Kinetic energy of fluid

T Tb +Tf

U, v, w Components of V in body coordinates

V Velocity of torpedo

W Weight of torpedo

x, y, z Body-fixed coordinates

X0, Yo, zo Space-fixed coordinates

xB YB', ZB Components of buoyancy moment arm

xG, YG, zG Body coordinates of torpedo c.g.

X2, Y2, Z2  Components off2 in body coordinates
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G Angle of attack of torpedo

Angle of sideslip of torpedo

de Elevator deflection

4r Rudder deflection

?,/,LL, Direction cosines of n

/0 Density of fluid

01 Velocity potential function

f, 6, ~ Inertial reference angles of torpedo

_W Angular velocity of torpedo

t
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Appendix B

FORCE AND MOMENT ON TORPEDO PREDICTED FROM IDEAL FLUID

Consider the torpedo to be immersed in an ideal fluid of
infinite extent, the fluid being at rest at infinity. Let the
velocity field be denoted by q. The total linear momentum of the
fluid is given by

(lO6). G d

where the integral is over the entire volume of the fluid. Themomentum of the fluid must have a finite value since otherwise it

would be implied that an infinite momentum had been imparted to
the fluid by finite forces exerted for a finite time by the tor-
pedo, and this is impossible. Now consider an element of the
fluid occupying the volume dT. By Newtonls' second law the force
dF acting on the element is

d
(107) d_ = - (ft dT)

dt

The total force acting on the fluid is obtained by integrating
over the whole fluid. Then, if f denote the total force acting
on the fluid,

d
(108) f =(P dT)

dt

d=-pa dT*

dt

The total force on the fluid is that exerted by the torpedo. Hence,
by Newton's third law the force F_ on the torpedo is

40-f
(109) E -f 7-

dt
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In a similar manner the net moment acting on the fluid about
a point in inertial space may be shown to be equal to the inertial
time rate of change of the total angular momentum of the fluid.
Then, also,

%(110)
dt

where

(111) =f p xj d, 

_ being the radius vector of the fluid element jOdT.
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Appendix C

FORCE AND MOMENT REFERRED TO A MOVING COORDINATE SYSTEM

The laws of dynwmics state that the external force acting on
a system is equal to the time rate of change of linear momentum
of the system, and that the moment of this force about a point
fixed in space is equal to the time rate of change of the angular
momentum about this point. Let Oxyz be the body-fixed coordinate
system of the torpedo, and let the velocity V of 0 have the com-
ponents U, v, w on these axes. The angular velocity W about 0
has the components p, q, r. Let G be the linear momentum of the
system and let H' be the angular momentum about a point 0' fixed
in inertial space. Let H be the angular momentum about 0. The
time rate of change of a quantity seen from O' will be denoted
by the operator d/dt. The time rate of change as seen from the
moving coordinate system Oxyz will be denoted by a dot placed over
a symbol.

The force acting on the system is given by (see Ref. 6)

d G

(112) F = G + c Y G
dt

The angular momentum H' about 0' and the angular momentum H
about 0 are related by

(113) H' = H + S X G7

where S Is the radius-vector from 01 to 0. Thus the moment L'
about 0' is given by

dH' dli
(114) L'. =- =- + S X F + V X G

dt dt -

since V = d_/dt. The moment L about 0 is given by

(115) L = L, - s X F

Hence,

(116) L = k+)H+VX 0
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Appendix D

DERIVATION OF MOMENTUM FROM KINETIC ENERGY

The kinetic energy of an ideal fluid is given in Eq. 31 as

1 8

(117) T = -- P dS

where the integral is taken over the surface of the torpedo. The
potential function has the ,orm

(118) = . + V2 + w0 + PA + q5 + r6

The velocity field j of the fluid is obtained from the velocity
potential as

-1-(n) A
The total linear momentum of the fluid is obtained by integrating
the momenta of the mass elements. Thus

1(120) fV9d7

By means of the divergence theorem the volume integration may be
expressed as an integration over the torpedo surface as

(121) O 0; ndS

where n is defined as in the section "Kinetic Energy of Ideal
Fluid.W The component of G in the x direction (using Eq. 24) is

(122) Gfx =10Jf9. XdS

, n

in view of Eq. 25. Using Eq. 118, Eq. 122 becomes

(123) Gfx allU + al2v + a 3w + al4p + a15q + a16T
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It is seen, then, that

(124) =fx a

It may be shown in a similar manner that the other components
of 2f are

Tf(125) GfY

Gf
z w

The total angular momentum of the fluid is given by

(126) A = -pJ s X V9dr

where S is the radius vector of the fluid element p dT. Now

(127) '9 Y s = 7 x 9)s -9V x a

=v x .s

since 7XS =0.

By the divergence theorem, then, the volume integral of'
Eq. 126 may be transformed to an integral over the surface of the
torpedo as

(128) = -, Pn X S dS

The component of Hf in the x direction is therefore

(129) Hf = "pg q z-"7)dS

with reference to Eq. 27. Us1ixg Eq. 118 and 32, Eq. 129 may be

written

(130) Hfx - a11U + a2 4v + a 34w + a44p + a45 q + a46r

aTf
bp
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Similarly,

(131) Hr T

Tf
Hff

The components of momentum of the torpedo body may be deter-
mined from the kinetic energy of the body. The linear momentut
is defined by

(132) G = mi(!_ + 0x SO

and the angular momentum by

(133) Hb ="mi x (v + x ri)

4where the summation is over all particles mi of the torpedo, and
is the radius vector from the origin to mi.

Since
1

(134) h = mj(Y + ej x r,) 2

2

(13) - = .mi(v+ xi -+--xi+ -- )
bu 6u 6u u

- mi(v + W x ri).i

= Gbx

bTb bTb
Similarly, - = Gb and =b

bv y bw z

Differentiating Tb with respect to p yields

Tb bV
(136) -pmi(I _ + 4. )  - X ri + W Xap aP bp bp
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(136)
Contd. -- mi(V + _w x (ix

= mir x (V + w x

= Hbx

Similarly,
~Tb Tb

"7by-' bx

Consequently, since T = Tb + TV, G= f + G b, and H = +

bT LT aT
(137) O =-i +- j +- "k

-U v w

6T aT 6T

€I

H- - j + -

461
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Appendix E

RESOLUTION OF BUOYANCY AND GRAVITY FORCES AND
MOMENTS ONTO BODY COORDINATES

The orientation of a torpedo with respect to a fixed inertial
frame of reference is specified by an angle of yaw K, an angle of
pitch 6, and an angle of roll 9P. Let the inertial axes be xo,
Yo, Zo, aud let the unit vectors in the direction of these axes be
Io, 1o, kj, respectively. The body axes at the start coincide
with the inertial axes and are then rotated about the zo axis
through an angle Y/to coincide with axes xl, Yl, zl. Let the unit
vectors in the directions of these axes be il, 1I, k. Then

(138) i = _ cos y + 0 sin yr

= -L sin Y/+ 1. cos y

4W~ = k

Now the body axes are rotated about the y1 axis through an
angle e to coincide with axes x2 , y2 , z2. Letting the unit
vectors in the directions of these axes be 12,  2)

(139)' 2 = i cos - k sin

=o sin + k cos -

Finally, the body axes are rotated around the x2 axis through
an angle P. Letting the body axes be x, y, z and the unit vectors
in the directions of these axes be i_, , k, respectively, yields

(14o) 1 =

= 2cos 99+ k sin

k -, sin P + k cos

V 47
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Combining these transformations gives
(141) = cos Y cos e + sinkcose- sin

= _o(cos sin 1 sin sin ;s'cos

+ l(sin sin 9 sin + cos s cos o)

+ k cos e sin P

k = O(sin 3if sin q + cos V sin 6 cos 10)

+ J(sin Yl sin 9 cos5 - cos V sin

+ ko cos e Cos

or

(142) io =I cos -,.cos 0 + I(cos Y sin 9 sin 9' - sin ycosp)

+ k(sin sin + cos K sin cos 9)
10 a in r cos & + J.(cos V cos ? + s in s in a 'n

+ ](sinVrsin 0cos 'cosW sin 9)

ko= -isin + I cos 0 sin P+ k Cos 9 Cos

The weight and buoyancy forces act in the zo direction.
Hence the vector representing the gravity buoyancy force is

(143) (W - B)kO = (W - B)(-i sin 6)+ sin V cos 0 + k cos 9'cos e)

The components of the gravity-buoyancy force may be read
from this expression.

If is the radius vector from the origin of the body coor-
dinates to the center of buoyancy, the moment about the origin
caused by the buoyancy force is

,(144) EB X (-Bko) :

Since r =1c, the moment due to buoyancy is

/1 148
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(145) BxB cos coa 0 - _BxB sin 9 cos 0

Letting rE be the radius vector from the origin to the center
of gravity of the torpedo, the moment about the origin caused by
gravity is

(146) xG Xw

Since

the gravity moment is

(147) - -WzG sin 99 cOs -%WzQ sin L

49
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Appendix F

RESOLUTION OF ANGULAR VELOCITY TO INERTIAL COORDINATES

The angular velocity of the torpedo has the components p, q,
r in body coordinates. It is required that the angular velocity
be expressed in inertial coordinates ( 6 9, ?). It is noted that
is the angular velocity about the zo axis, 6 is the angular

velocity about the yl axis, and V is the angular velocity about the
x axis. Hence

(l148) Lp+j r .6+k

Using the relations between the unit vectors of Appendix E,

(1119) =si0

q = cos P + sin V cos

r = -Gsin + cos cos e

50 j
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Appendix 0 4

REAC ANALOG OF TORPEDO SYSTEM

The system to be solved on the REAC is described by the sys-
tem of equations

(150) " mTVDO3 = Y00 + (Yr - mLV)3u+ YpD)+ Yd-

Ir JDjt Nop + Nr '+ NPDO + Nf or

(1 + TID)dr = y-V)

where D represents the operation of differentiation with respect
to time t. Equations 150 are more readily analoged if they are
transformed as follows:

, Nr
(151) -(mTV + Y; )D (Y +Y ) +(YrmLV + Y )

Jz Jz Jz

+ (Ydjr + Y 1 No- )d
Jz

(Jz + N6 Y  )D = (N - N .-- )0 + (Nr- N YrV

MTV mTV MTV

+ (Nr o r )d'
r MTV.

r TA TI
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The REAC analog of this system is shown in Fig. 3. The
symbols used have the following meaning:

=Summing Amplifier

(Ponte nrtiog mter) 
e

AKj = Geting of penmter

number i

The amplifier inputs have available gains of 1, Fand 10.

The output is inverted in sign.

The equations of the analog are

(152) el e2  Al,3e 3
el A1 -3K, + A1 2A6K2 = 1 K

D D

e2  el1  a3
e2 -A2 3 K 4 -+ A2 . A5 K5 -- A2 . 2 K6-

DD D

a3=-A 3 . 3 K7 - + A3 1LAi 1K8 - A3 .2
D D 2
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0

'-4

1 _ _ _ _ _co

Lb44(0

bvp

cli (n
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where D is the operator representlng differentiation with respect
to the computer time base t. Let t = nt. Then D = nD. The
voltages el, e2, e3 are the electrical analogs of the variables 3r,
1, drr, respectively, of the physical system. Let

(153) ale,

a2 e2 =

a3 e3 =Cr
a~e4 = rs

Equations 152 may then be written

al a.,
(154) Dk/= -nAl.3Klj + - nA1 .2A2  --- nAIIK31

a2  a3

a2  a2D =-o AK 4 + -nA 2.1A5K5y'- - A2.2K6r'
al a3a1  a3

-nA3K.~. a3  a
-nA33 *- n2A31 A 4K83V- nA 3.2Ysf

r a1

By comparing Eq. 15 with Eq. 151 it is seen that the two
systems are equivalent if

YO

a I 1MTV-- nA1.2A6 K2 = +

a2  y

NiMTV

Yr- mLV

Nr -I

MUTV

nAI.3K5 Yi
Jz + N-

zv
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a, r MTV
-A 1 1 K3
a3 3

+N

Jz

Nr

a 2  Jz
nA2A 5 K4

MTV + 

a2  J

a,

MTV __

J55
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Amplifier gains, potentiometer settings, time base change n, and
the ratios al/a 2 , al/a3 , au/a4, are chosen in such a manner that
the above equations are satisfied. The response to an initial yaw
error, obtained by placing the appropriate initial condition on
amplifier A4, may be found.

56 I:
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